Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
home_test_julia [2017/02/07 09:33]
antonello
home_test_julia [2017/02/07 10:15]
antonello
Line 1: Line 1:
-not in code+===== Installation =====
  
-<code julia>+**Step 1:**  
 +  * Option a: Get an account on [[https://juliabox.com|JuliaBox.com]] to run julia/JuMP script without installing anything on the local computer 
 +  * Option b: Install Julia for your platform ([[http://julialang.org/downloads/|http://julialang.org/downloads/]])
  
 +**Step 2:**
  
-Transposition in JuMP of the basic transport model used in the GAMS tutorial+Run, only once, the following code to install JuMP language and a couple of open source solvers: 
 +<code julia> 
 +Pkg.update()                        # To refresh the list of newest packages 
 +Pkg.add("JuMP"                    # The mathematical optimisation library 
 +Pkg.add("GLPKMathProgInterface"   # A lineaqr and MIP solver 
 +Pkg.add("Ipopt"                   # A non-linear solver 
 +Pkg.add("DataFrames"              # A library to deal with dataframes (R-like tabular data) 
 +</code>
  
-This problem finds a least cost shipping schedule that meets +===== Model components =====
-requirements at markets and supplies at factories.+
  
-- Original formulation: Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions. +==== Importing the libraries ====
-Princeton University Press, Princeton, New Jersey, 1963. +
-- Gams implementation: This formulation is described in detail in: +
-Rosenthal, R E, Chapter 2: A GAMS Tutorial. In GAMS: A User's Guide. +
-The Scientific Press, Redwood City, California, 1988. +
-- JuMP implementation: Antonello Lobianco+
  
 +You will need to import as a minima the ''JuMP'' module. If you wish to specify a solver engine rather than letting JuMP select a suitable one, you will need to import also the module relative to the solver, e.g. ''Ipopt'' or  ''GLPKMathProgInterface''
  
 +<code julia>
 +# Import of the JuMP and DataFrames modules (the latter one just to import the data from a header-based table, as in the original trasnport example in GAMS 
 using JuMP, DataFrames using JuMP, DataFrames
 +</code>
  
-# Sets+==== Defining the "sets" ==== 
 + 
 +JuMP doesn't really have a concept of sets, but it uses the native containers available in the core Julia language\\Variables, parameters and constraints can be indexed using these containers.\\ 
 +While many works with position-based lists, I find more readable using dictionaries instead. So the "sets" are represented as lists, but then everything else is a dictionary with the elements of the list as keys.\\ 
 +One note: it seems that Julia/JuMP don't like much the "-" symbol, so I replaced it to "_".\\ 
 +  
 +<code julia> 
 +## Define sets ## 
 +#  Sets 
 +#         canning plants   / seattle, san-diego / 
 +#         markets          / new-york, chicago, topeka / ;
 plants  = ["seattle","san_diego"         # canning plants plants  = ["seattle","san_diego"         # canning plants
 markets = ["new_york","chicago","topeka" # markets markets = ["new_york","chicago","topeka" # markets
- 
-# Parameters 
-a = Dict(              # capacity of plant i in cases 
-  "seattle"   => 350, 
-  "san_diego" => 600, 
-) 
-b = Dict(              # demand at market j in cases 
-  "new_york"  => 325, 
-  "chicago"   => 300, 
-  "topeka"    => 275, 
-) 
- 
-#  distance in thousands of miles 
-d_table = wsv""" 
-plants     new_york  chicago  topeka 
-seattle    2.5       1.7      1.8 
-san_diego  2.5       1.8      1.4 
-""" 
-d = Dict( (r[:plants],m) => r[Symbol(m)] for r in eachrow(d_table), m in markets) 
- 
-f = 90 # freight in dollars per case per thousand miles 
- 
-c = Dict() # transport cost in thousands of dollars per case ; 
-[ c[p,m] = f * d[p,m] / 1000 for p in plants, m in markets] 
- 
-# Model declaration 
-trmodel = Model() # transport model 
- 
-# Variables 
-@variables trmodel begin 
-    x[p in plants, m in markets] >= 0 # shipment quantities in cases 
-end 
- 
-# Constraints 
-@constraints trmodel begin 
-    supply[p in plants],   # observe supply limit at plant p 
-        sum(x[p,m] for m in markets)  <=  a[p] 
-    demand[m in markets],  # satisfy demand at market m 
-        sum(x[p,m] for p in plants)  >=  b[m] 
-end 
- 
-# Objective 
-@objective trmodel Min begin 
-    sum(c[p,m]*x[p,m] for p in plants, m in markets) 
-end 
- 
-print(trmodel) 
- 
-status = solve(trmodel) 
- 
-if status == :Optimal 
-    println("Objective value: ", getobjectivevalue(trmodel)) 
-    println("Shipped quantities: ") 
-    println(getvalue(x)) 
-    println("Shadow prices of supply:") 
-    [println("$p = $(getdual(supply[p]))") for p in plants] 
-    println("Shadow prices of demand:") 
-    [println("$m = $(getdual(demand[m]))") for m in markets] 
- 
-else 
-    println("Model didn't solved") 
-    println(status) 
-end 
-  
-# Expected result: 
-# obj= 153.675 
-#['seattle','new-york'  = 50 
-#['seattle','chicago'   = 300 
-#['seattle','topeka'    = 0 
-#['san-diego','new-york'] = 275 
-#['san-diego','chicago' = 0 
-#['san-diego','topeka'  = 275 
 </code> </code>
- 
home_test_julia.txt · Last modified: 2018/06/18 15:11 (external edit)
CC Attribution-Noncommercial-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0