
T
m

A
U

a

A
R
R
A

K
A
M
E
C

1

t
G
i
(
m
(
1
t
t
(

s
l
e
e
c
(
p
P

r

0
d

Computers and Electronics in Agriculture 72 (2010) 14–26

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journa l homepage: www.e lsev ier .com/ locate /compag

he Regional Multi-Agent Simulator (RegMAS): An open-source spatially explicit
odel to assess the impact of agricultural policies

. Lobianco ∗, R. Esposti
niversità Politecnica delle Marche, Department of Economics, P.le Martelli 8, 60131 Ancona, Italy

r t i c l e i n f o

rticle history:
eceived 21 April 2009
eceived in revised form 9 February 2010
ccepted 22 February 2010

eywords:

a b s t r a c t

Regional Multi-Agent Simulator (RegMAS) is an open-source spatially explicit multi-agent model frame-
work specifically designed for long-term simulations of the effects of policies on agricultural systems.
Using iterated conventional optimisation problems as agents’ behavioural rules, it allows for a bidirec-
tional integration between geophysical and social models where spatially distributed characteristics are
taken into account in the programming problem of the optimising agents. With RegMAS it is possible to
gent-based modelling
athematical programming

xplicit spatial analysis
ommon agricultural policy

simulate the local specific response to a given policy (or scenario), where policies, together with macro-
and regional characteristics, are read into the program in specially formatted spreadsheets and standard
GIS files.

The paper presents the model logic and structure and describes its functioning by applying it to a case-
study, where RegMAS results are compared with conventional agent-based modelling to demonstrate
the advantages of spatial explicitness. The simulation refers to the impact of the recent “Health Check”

ures,
of the CAP on farm struct

. Introduction

Farm-based modelling approaches seem better suited than par-
ial or general equilibrium models (like ESIM, FAPRI/AGMEMOD or
TAP) to analyse the impact of changes in external conditions (for

nstance in policy regime) on agricultural activity and performance
Heckelei and Britz, 2005). In particular, mathematical program-

ing, and more specifically Positive Mathematical Programming
PMP) models, are widely used in agricultural policy analysis (Paris,
991; Arfini, 2000). However, by modelling representative agents,
hey miss the interaction between heterogeneous farmers, while
his aspect is explicitly considered in so-called agent-based models
ABMs).

Regional Multi-Agent Simulator (RegMAS) is an open-source
patially explicit multi-agent model framework, developed in C++
anguage specifically designed for long-term simulations of the
ffects of agricultural policies on farm structures, income, land use,

tc. More specifically, RegMAS conceives agricultural systems as
omplex evolving systems made of a set of heterogeneous “agents”
mostly farmers) whose behaviour is generated by a conventional
rofit-maximisation problem in the form of a Mixed-Integer linear
rogramming (MIP) problem. Farmers compete in the land-market

∗ Corresponding author. Tel.: +39 0712207116.
E-mail addresses: a.lobianco@univpm.it, antonello@lobianco.org (A. Lobianco),

.esposti@univpm.it (R. Esposti).
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income and land use in a hilly area of a central Italian region (Marche).
© 2010 Elsevier B.V. All rights reserved.

and use the “new” rented land (together with investments and
other purchased inputs) to increase their competitiveness.

Noticeably, however, the original feature of RegMAS is that
farmers behaviour explicitly and realistically takes space into
account. The spatial dimension is initialised from real land-use data,
using satellite information, and plots are explicitly modelled within
the agents’ problem as individual resources with spatial infor-
mation organised in different layers (e.g. land typology, altimetry
and environmental constraints) (Fig. 1). This approach allows very
detailed analysis along the spatial dimension, as farmers’ decisions
can be based on individual plot properties and farmers’ activity can
admit spatial interaction (e.g., through the impact of distance on
costs and land renting) and can be evaluated from a multidimen-
sional perspective, for example by including the environmental
point of view (land abandonment, for instance).

In this paper we thus describe the RegMAS modelling frame-
work and demonstrate its potential by applying it to evaluating the
impact of the recent EU Common Agricultural Policy (CAP) reform
known as “Health Check” on a real Italian territory. The application
emphasizes the effects of such policy change on different farm types
to show how the model is able to take into account both structural
and spatial heterogeneity (for instance, distinguishing between

small and large farms but also between plain and mountainous
farming). This case study aims at demonstrating the advantages
and applicability of the spatial explicit modelling in RegMAS.

Section 2 describes the methodological approach underlying
RegMAS. After a short introduction of agent-based modelling

http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
mailto:a.lobianco@univpm.it
mailto:antonello@lobianco.org
mailto:r.esposti@univpm.it
dx.doi.org/10.1016/j.compag.2010.02.006
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the Mediterranean agriculture.
Fig. 1. RegMAS user interface showing the available layers, the

pplied to agricultural systems (2.1), the section focuses on the
wo key modelling issues, modelling farmers behaviour (2.2) and

aking space explicit (2.3), and then describe how the model is
tructured and solved (2.4). The case-study is then presented in Sec-
ion 3 and results of this application discussed in Section 4 where
he model is applied to alternative scenarios and sensitivity analysis
s performed in order to better verify and validate model logic and
unctioning with special reference to spatial explicitness. Section 5
nally concludes.

. The logic behind RegMAS

.1. Overview

Agent-based models (ABMs) within the specific agricultural
ontext were pioneered by Balmann (1997) with the Agricultural
olicy Simulator (AgriPoliS) model. ABMs allow representing eco-
omic and social systems as the result of individually acting agents.
hen applied to agriculture, they can simulate, at the micro-level,

he behaviour of individual farmers, without the need of aggregat-
ng them in “representative” agents, and then generate the macro
aggregate)-evidence. Furthermore, ABMs can catch the iterations
f the heterogeneous farms when competing over common finite
esources, e.g. land.
Parker (2003) and Boero (2006) review several ABMs involving
and use changes in various scientific areas, including agri-
ultural economics, natural resource management, and urban
lanning. This section shortly describes how RegMAS borrows
any concepts from previous ABMs (as AgriPoliS), in primis the

doption of a profit-maximisation algorithm to model farmers
ehaviours.
tudy region and the current state of the model’s main variables.

In AgriPoliS agents are mainly farmers1 whose objective is the
maximisation of household income.2 To achieve this objective,
farmers solve a MIP problem that is, in some aspects, farmer-
specific. Beside solving this linear programming problem, farmers
can operate in the land market by deciding to rent or to release agri-
cultural plots. Any farmer in the model is a real farmer taken from
farm-level datasets (in Europe, the Farm Accountancy Data Net-
work, FADN) and explicitly associated to a spatial location. Space
(i.e. location) is important in the model for two basic reasons: it
influences transport costs (through distance) and makes farmers
interact each other, by competing for the same bordering land
plots. Also due to privacy-protection regulations, however, it is
not usually possible to have access to the real farm localisation.
Therefore, space can not be modelled according to the real land
coverage but only randomly distributing farmers over a virtual
region. Most recent applications of AgriPoliS allow model initialisa-
tion from real land-use data, using satellite information (Piorr et al.,
2009). However soil remains homogeneous within the same quality
class.

A detailed description of AgriPoliS can be found in Happe
et al. (2006) and in Kellermann et al. (2007). Sahrbacher et al.
(2005) describes AgriPoliS implementation over several case-study
regions and Lobianco (2007) presents an adaptation of AgriPoliS to
1 Other agents perform specific tasks, such as managing land market or coordi-
nating product markets.

2 Nonetheless, throughout the paper for simplicity we use term “profit” to express
the objective of maximisation though in agricultural context it could be more appro-
priate to use “farm gross revenue” as objective function or, if household activities
are also included, “household income”.
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.2. RegMAS: modelling farmers behaviour

RegMAS uses Mixed Integer linear Programming (MIP) tech-
iques to derive farmers behaviours, with profit maximisation as
bjective function. There is no real alternative to mathematical
rogramming in modelling farm behaviour over such disaggrega-
ion of activities and heterogeneity. Any parametric estimation of
more flexible technology would be, in fact, unaffordable.3 It is

lso true that, within mathematical programming techniques, valid
lternative solutions to conventional linear programming do exist
n modelling individual behaviour: multiple goal programming,
ecursive multi-period programming, dynamic programming, etc.
Hazell and Norton, 1986; Romero and Rehman, 2003). Here, how-
ver, a simple linear profit maximisation problem is adopted not
nly because it is the prevalent approach in agricultural policy mod-
lling (Ellis et al., 1991; Happe et al., 2008). It also has the advantage
f flexibility, as it can account for the whole range of farm activi-
ies, from growing specific crops to investing in new machinery
r hiring new labour units. Moreover, it is computationally fea-
ible within an agent-based contest where each agent has its own
bjective function and further computational effort is demanded by
he spatial-explicit functioning of the model as illustrated below.

final advantage of the MIP is that the introduction of integer
arameters allows scale effects to emerge in the model, thus let-
ing farmers evolve their response and performance on the basis of
heir economic and physical size included land rental behaviour.4

Any farmer autonomously makes his own decisions by solving
is own MIP problem:

maxxi
Y =

C+I∑
i=1

(GMi ∗ xi)

s.t.
C+I∑
i=1

ai,j ∗ xi ≤ bj ∀j = 1, . . . , J

xi ≥ 0 ∀i = 1, . . . , C + I
xi ∈ int ∀i = C + 1, . . . , C + I

(1)

here i, activities index; Y, profit; j, resources index; GMi, gross
argins; C, continuous activities; bj , capacities (RHS); I, integer

ctivities; ai,j , technical coefficients; J, resource constraints; xi, pro-
uction quantities (argument of the maximisation)

The resource and activity sets are open: the RegMAS user is free
o include (or exclude) further individual activities and resources.
n the current version, we implement within the model all typi-
al activities and resources in running a farm, financial and labour
ctivities included. While in specialised linear-programming mod-
ls these activities can be very detailed, in ABMs the presence of
ifferent types of farmers, for any of which a specific program-
ing problem has to be solved, makes the analysis limited to more

ggregated activities.
Farmers maximise their profit any time they bid to rent a new

and plot (2.3.2) in order to calculate the respective shadow price,
r any time they plan a new investment, or decide the produc-

ion levels using available resources and assets. The initial farm’s
ndowment (financial assets, land endowment, machinery, ani-
als, etc.) can be taken from real datasets (FADN data in the present

ase). In problem (1) these data (vector A in Fig. 2) represent the

3 Paris (1991) and Arfini (2000) present an in-depth analytical description and
literature review of linear programming techniques applied to farm modelling,

espectively.
4 Further future developments of the present model can evidently concentrate

he attention on more sophisticated, and perhaps realistic, representation of farmer
ehaviour. The computational costs of more behavioural complexity within a spa-
ially explicit ABM, however, will still remain the limiting factor.
ronics in Agriculture 72 (2010) 14–26

right-hand-side terms of the constraining inequalities. Any farmer
chooses from a list of activities. They can be divided in two cate-
gories: activities that generate costs and revenues within 1 year (B)
and activities that generate results over multiple years (i.e., invest-
ments, C). Investments can only take integer values but a given asset
is still available in different sizes, allowing scale-effects to emerge
in the model (e.g., larger-size investments may have smaller unit
costs or labour requirements).

To solve problem (1) farmers choose the quantities of the various
activities (D) that maximise the objective function (E), i.e. profit.
The gross margins of the various activities (F) are the parameters
of the linear objective function, while the matrix of coefficients G
links the activities (B + C) with their respective constraints (H).

According to this structure, RegMAS simulations can be run
to assess how farmers adapt to changes in their environment.
Such changes may concern either resource endowment (their con-
straints) or activity gross margins, and may be generated either
endogenously, when they result from the model solving proce-
dure (e.g., an investment decision or new rentable plots released
by farms exiting the sector), or exogenously (e.g., changes of mar-
ket prices or of policy support associated to a given activity). In
addition, agents’ performance can evolve over a simulation period
on the basis of investments made in previous years also according
to how farmers’ finance is modelled and enters the MIP problem.
This latter aspect requires a detailed and specific description.

2.2.1. Financial aspects
In RegMAS, investments require liquidity. To calculate the liq-

uidity available to farmers at the beginning of year t, we sum the
liquidity available at the beginning of year (t − 1) to all revenues
and costs occurred over year (t − 1) and subtract the sunk costs
to be paid before starting production in year t. Liquidity is thus
calculated as follow:

liquidityt= liquidityt−1+productionProfitst−1+decPaymentst−1

− withdrawalst−1 −
N∑

n=0

invCostst−1,n

− sunkCostst

(2)

where (productionProfits) comes from (t − 1) MIP optimisation
including coupled premiums and off-farm activities. (decPay-
ments) expresses the decoupledt−1 support received in year (t − 1).
(
∑N

n=0invCostst−1,n) represents the total expenditure for invest-
ments made in year (t − 1). (sunkCosts) are costs generated from
previous choices, like multi-year rental costs or investment main-
tenance costs. (withdrawals) are the financial resources required by
the farmer’s household to support its own private expenditure and
costs. They are calculated as a fixed portion of profit plus a mini-
mum requirement level that depends on the farm size (measured
in family Annual Work Units):

withdrawals = perCapMinwithdrawals ∗ AWU
+ max(0, profits ∗ withdrawalsProfitShare)

(3)

Within RegMAS, (invCostst) can be also covered borrowing money
on the credit market (loans). A farmer can obtain loans on the credit

market up to a maximum share of the total capital value (this maxi-
mum is currently 80%). Each year the farmer optimises the amount
of money to be borrowed on the credit market given its financial
situation and the exogenous cost of credit (i.e., the interest rate).

The capital endowment at the beginning of year t is thus cal-
culated as the sum of liquidity and the current value of past
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Fig. 2. Example of the agent’s Mixed

nvestments5:

apitalt = liquidityt +
I∑

i=0

investmentCurrentValuei,t (4)

ith I is the number of own capital goods (assets). The real
epreciation of different investment objects may depend from the
haracteristics of the investment itself, but in the current ver-
ion of the model the investment value linearly decreases for all
bject types. Therefore, due to the presence of loans, (4) actually
epresents total capital as combination of debt and equity capi-
al under the aforementioned constraint that the debt capital can
ever exceed 80%.

.3. RegMAS: making space explicit and real

As AgriPoliS, RegMAS has a spatial dimension, that is, it consid-
rs the spatial heterogeneity in such a way that, for example, the
odel can associate a different rental price to each plot and, thus,

an investigate possible land abandonment even when land cultiva-
ion is profitable, on average profitable. Differently from AgriPoliS,
owever, this spatial dimension is fully explicit, in the sense that,
ot only plots are initialised from real cartographic data, but they
re also explicitly modelled in the decision matrix as individual
esources, without the need of aggregating them in soil classes.

.3.1. Region initialisation
Before running the simulation, the model must fix the environ-

ent where the simulation will be generated. This environment
ncludes different dimensions: the legislative (subsidies, legal
onstraints, etc.), the biophysical (agronomic and technical coef-

cients) and, finally, the economic dimension (factor and product
rices). Then, individual farmers can be created, positioned in the
odelled space and granted with the tools and resources they need

o operate (e.g. land, machinery and financial resources).

5 Land is not included in this calculation as it is directly read from the farmers’
ata file and its endowment never depreciates.
er Programming Problem (excerpt).

Unfortunately, detailed data on all the individual farms (micro-
data) within a given region all are often unknown (sometimes for
privacy reasons) while aggregate (macro-) data (for instance, size
distribution) are usually available (e.g. from Census). Therefore,
to re-create the simulation region, the model uses sample farms,
for which detailed data are available (in the present case, farms
belonging to the FADN), then weighed with a scaling coefficient
in a such a way that the difference between the aggregate figures
of the simulated region and of the real region is minimised (Eq.
(5))6:

min
UCn≥0

K∑
k=1

⎛
⎜⎜⎜⎜⎝

N∑
n=1

(FADNn,k ∗ UCn)

REGIOk
− 1

⎞
⎟⎟⎟⎟⎠

2

(5)

where
Indices Variables

n = {1, . . . , N} individual farms FADNn,k= FADN data
k = {1, . . . , K} macro-characteristics REGIOk= regional aggregate data

UCn= “upscaling” coefficient (argument
of the minimisation)

2.3.2. Land allocation, land market and transport costs
After region initialisation, an obvious problem when dealing

with spatially explicit agent based models concerns the locali-
sation of agents and of their spatial objects. As there is already
an informative layer, consisting of the real land use (the Corine
Land Cover database), we need to make the model consistent with
this layer, by placing farms over it. Firstly, farms are assigned a
random location selecting a plot compatible with their activities,

starting from the less common. The simple idea is that “rare” land
uses have the precedence over more common land uses to min-
imise distance between such plots and the farmsteads. Hence, if
a farm has, for example, both plots with fruit plantings and plots

6 This procedure is called “upscaling” and it is well documented in Kellermann et
al. (2007), while a practical implementation is discussed in Sahrbacher et al. (2005).
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Modelling Language (UML) diagram with the main classes and their
relations.

While this approach allows for rapid development of different
agent types (as only specific characteristics need to be modelled),

7 The Reference Manual has a pseudo-code that details the steps
the model does to add activities to the MIP problem, available at
8 A. Lobianco, R. Esposti / Computers and

ith arable crops, the farmstead position will correspond to the
ruit plantings. Subsequently, plots are assigned to the closest
arm that has still an un-assigned capacity for that specific soil
ype, giving precedence to owned plots in comparison to rented
nes.

Such land allocation is not, in fact, an optimisation algorithm
s plots are not assigned to farms in such a way that the total
lots X farmsteads distance is minimised. After all, the real world
tself is far from being an optimal land allocation across farms, as
hysical boundaries and hereditary rules sometimes split the farm

and endowment in several scattered plots often generating a fairly
ragmented allocation.

This initial land allocation across farms, however, is not defini-
ive. During model simulation farmers can bid to rent new plots.
ifferent assumptions on modelling land market can be made
ithin an ABM (Kellermann et al., 2008). In the present case, we

ssume a rental market made up of fixed-term contracts whose
uration is randomly chosen within a fixed interval. In practice,
egMAS does not allow direct farmer-to-farmer renting contracts,
s farmers can only rent land from an anonymous intermediate
gent that operates in the land market collecting plots released by
arms exiting the business, in addition to the initial pool of rentable
lots. This agent makes all these plots available to farmers through
bid where only the farm offering the highest price eventually rents

he plot.
Any farmer associates a shadow price to any rentable plot and

hen asked to bid he offers a fraction of this shadow price to take
nto account both fixed and variable transaction costs and over-
eads. The shadow price for any rentable plot is simply calculated
erforming two MIP optimisation problems, with and without the
lot, and calculating the difference between the two profits (see
ection 2.2).

In existing ABMs, like AgriPoliS, land heterogeneity only consists
n different soil types; therefore, plots are homogeneous within the
ame soil type and farmers are guaranteed to place the highest bid
or any certain soil type on the closest plot. This allows these models
o speed up the algorithm code of the land rental market. RegMAS,
n the contrary, works with real land-use data therefore plots are
eterogeneous also within soil types thus making such algorithms
ery computationally demanding (all bid from any farmer on any
lots should be collected). To limit the computational complexity
ut also to add more realism to land market functioning, there-
ore, RegMAS offers the option to restrict the bidding process to
he farmers operating within a given distance from the rentable
lots; the exact number of bidders (that is, the spatial range over
hich any farmer can rent land) is a parameter calibrated accord-

ng to the transport costs: the higher the transport costs, the lower
he likelihood that a given farm may offer a successful bid (thus,
he smaller the range over which he can operate). This is a critical
orm through which space enters the model: distance and costs
ssociated to it affects the capacity of a farm to rent new land
nd, thus, to afford a better economic performance. Symmetrically,
eterogeneity of land allows to take into account local plot charac-
eristics in forming plot rental prices (and, eventually, in their rental
tatus).

Once the rentable plot is assigned to the farm that won the
id a new rental contract is established for a random (and, then,
xed) period (the RegMAS user can establish the duration) and the
lot, eventually associated to its spatial objects, enters the farmer’s
ptimisation problem as a new resource.
.3.3. The spatial dimension in the optimisation problem
Due to such spatial explicitness, the farmer maximisation prob-

em 1 changes as it takes into account plots as individual resources
nd each spatial activity is specified for each plot. The optimisation
ronics in Agriculture 72 (2010) 14–26

problem becomes:

maxxi
Y =

N+S∗P∑
i=1

(GMi ∗ xi)

s.t.
N+S∗P∑

i=1

ai,j ∗ xi ≤ bj ∀j = 1, . . . , R + P

bj = 1 ∀j = R + 1, . . . , R + P
ai,j = 1 ∀i > N ∨ i = N + (j − R)
xi ≥ 0 ∀i = 1, . . . , N + S ∗ P

(6)

where i, activities index; Y, profit; j, resources index; GMi, gross
margins; N, non-spatial activities; ai,j , technical coefficients; S, spa-
tial activities; bj , capacities (RHS); R, constraining resources; xi,
production quantities (argument of the maximisation); P, individ-
ual plots.

If the number of plots available to a farmer increases, however,
the problem matrices is expected to grow to a size hardly man-
ageable even for modern calculators. Therefore, RegMAS follows
a sort of “filtering” procedure that, before adding the activities to
the matrix, checks for consistency of any activity with the plot land
use and eventually with the presence of the necessary objects (an
example could be that wine growing activity could be made only on
suitable land with planted vineyards).7 Despite the higher compu-
tational costs, using individual plots in the decision problem allows
spatial activities to be evaluated by farmers on the basis of charac-
teristics of their associated plot. This means that farmers can take
account of transport costs associated to distance of a given plot from
the farmstead and of plot’s altitude (the hypothesis being that gross
margins declines with altitude). This GIS-alike functionality allows
a full linkage between the economic and the geophysical parts of
the model.

Similar advantages arise on the output side: when the land use
remains implicit in the matrix decision matrix (e.g. farmers are pre-
sented with the “agricultural land” total resource rather than with
each individual plots) the spatial location of production remain
undefined.8 When, on the contrary, the farm optimises a matrix
with an activity X plot structure, the model can allocate the corre-
sponding chosen activity to its associated plot.

2.4. RegMAS: model structure and solving

RegMAS has been designed from the ground up to explicitly con-
sider farmers as one specific type among several possible types of
agents. “Farmer” agents are derived from a more general type of
“spatial” agents that is, in turn, derived from a “basic” type. Each
agent type has its own “manager” agent that interacts with a “Super
Agent Manager”. The former is a sort of “agent-side” interface while
the latter implements the same interface on the program “core-
side”. In this way, the model core does not need to “know” the
agents internal logic. Fig. 3 depicts the organisation of the model
framework at the program level by providing the RegMAS Unified
http://regmas.org/doc/referenceManual/html/classOpt.html.
8 Various algorithms could be used (ex-post) to assign production to a particu-

lar plot. One of them is discussed in Brady et al. (2009). It assumes that farmers,
given a certain mix of production activities, try to spread them in the smallest pos-
sible number of fields, maximising their size. However, land is still considered fully
homogeneous within the same soil type.

http://regmas.org/doc/referenceManual/html/classOpt.html
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Fig. 3. RegMAS UML diagram: program

he current RegMAS mostly focuses on the specific domain of
griculture, thus farmer agents, but it has also the potential to
mphasize connections with other social systems, for instance
urban” agents.9

Fig. 4 summarizes the main logical steps of the model. As typi-
al in ABMs, the initialisation stage is critical because the relevant
haracteristics of the “real world” must be incorporated in the
odel (see also Section 2.3.1), the agents must be entered and

hey must be endowed with the relevant objects, in our case pro-
uction factors. After initialisation the model can proceed into
he simulation stage; simulation is organised in loops: any year
and is allocated to farmers; thereafter, they can activate pro-
uction activities by solving their optimisation problem. Before
roceeding to the next year, the model updates all the relevant
exogenous) variables and select those farmers that can continue
he activity while others exit the business whenever their equity
apital goes to zero or off-farm opportunity costs exceed farm
rofit.
To run simulations, RegMAS solves a MIP problem like (6) for
ny individual farm and in several steps during each simulated
eriod, resulting in thousand computations for each period, though
he “filtering” procedure illustrated above substantially reduces the

9 Analysing the Italian Corine Land Cover data between 1990 and 2000, Lobianco
2006) highlights that the largest change in agricultural land use, beside the shift to
ther agricultural uses, concerns reallocation to urban uses, revealing a competition
etween these two land destinations.
es with main attributes and relations.

matrix activity size. It follows that the speed of the solving algo-
rithm becomes a critical factor.

In fact, RegMAS uses external libraries to speed-up the solving
algorithm. RegMAS class Opt is responsible to establish the direc-
tion of the objective function (in our case, a maximisation), the set of
bounds, objective coefficients and constraint coefficients. Then, the
problem “object” is solved calling an external Dynamically Linked
Library (DLL). RegMAS uses the open-source GNU Linear Program-
ming Kit (GLPK) (Makhorin, 2007) that firstly applies a two-stage
revised simplex method for continuous solutions and then a Branch
& Bound method in case of integer optimisation.

From the computational point of view this latter methodology is
particularly helpful. In fact, MIP problems are more computation-
ally demanding than LP (Linear Programming) problems. However,
the Branch & Bound method, by partitioning the maximisation
problem in sub-problems whose upper and lower possible solu-
tions are reciprocally compared, allows for an efficient search of
the optimal solution over a much smaller domain.10

3. Model verification and validation: a case-study

application

To assess whether the depicted model works correctly and is
able to properly and plausibly reproduce the real world, we apply

10 Sub-problems with an upper bound lower than any other sub-problem lower
bound are automatically eliminated from the search.
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production to decoupled farm-specific payments sometimes based
Fig. 4. RegMA

egMAS to a case-study area. As mentioned, RegMAS is mostly
esigned to analyse how heterogeneous agents (farmers) operat-

ng over a territory respond to changes in the external environment
scenarios). Changes in agricultural policy regime evidently repre-
ent well-suited applications.

Unfortunately, it is not possible to validate the model on the
asis of some real historical observations that we can try to repro-
uce by running model simulations. On the one hand, RegMAS is
airly data demanding (census, FADN, detailed land coverage data)
nd, as mentioned, such requirements can not be met, for what-
ver territory, in any of the previous policy reform whose impact
ould be analysed within RegMAS. On the other hand, the only
etailed territorial data (still at municipality level, at maximum) are
nly available for few years (2001 the most recent) and are needed
o calibrate the MIP coefficients, as explained below. Nonetheless,
e can firstly adopt a case-study approach to verify if the model
orks correctly in reproducing the largely expected impacts of pol-

cy reforms. Then, the major features of RegMAS can be validated
hrough sensitivity analysis, that is, by comparing its simulation
esults with results obtained when such original features (espe-
ially in terms of spatial modelling) are dropped thus reverting to
xisting conventional ABMs.

For such purposes, we choose a case-study area that: (a) pro-
ides all required data and informations, (b) is small enough to
estrain computational burden but, at the same time, (c) still het-
rogeneous enough to show how the model is able to link farmers’
esponse and local territorial characteristics.

Therefore, for our simulations we select a hilly region of cen-
ral Italy, Colli Esini (in the middle of Marche region), including
4 LAU2 municipalities and approximately 50,000 UAA, hosting

n 2001 around 6000 farms. As emerges from its Land Use map
hown in Fig. 1,11 its main characteristic is the presence of two dif-
erent areas: a well-endowed and fairly homogeneous agricultural
rea at East closer to the urban part; a more heterogeneous, mixed
gro-forestry area on the South-West, closer to mountains.
This area has been thus selected both because of his represen-
ativeness of Italian agriculture and because of the different forms
f agricultural heterogeneity it presents and that make the model
otentials fully exploited and explored. Marche region presents an

11 The map is part of the Corine Land Cover and it follows its conventional colours:
ellow indicates agricultural areas, red urbanised areas and green natural areas.
el flowchart.

agriculture which assumes many of the typical characteristics of
Italian agriculture. In particular, the remarkable heterogeneity in
production conditions and in production activities, ranging from
plain and very productive areas to marginal mountainous farming,
from undifferentiated productions (cereals) to high-quality typical
productions (wine), from labour-extensive (grassland) to labour-
intensive activities (horticulture). Within this context, the selected
region “Colli Esini”) seems fully representative: it is a small enough
area to make model simulations computationally affordable but
still maintaining all the abovementioned heterogeneity with plots
ranging from fertile plain to marginal mountainous areas, from
coastal to inner parts of the region, from pasture land to intensive
high-quality vineyards.

To make the application more realistic, MIP technical coeffi-
cients have been derived either from recent literature values or
from the respective FADN data; prices come from market data.
Both coefficients and prices, however, required some calibration.
By using real observations at the maximum territorial disaggrega-
tion (municipality data in 2001), it is possible, in fact, to calibrate
such information in order to make the model closely reproduce the
observed macro-evidence, in particular to reproduce the aggregate
(at municipality level) land allocation across productions.

3.1. Policy scenarios

Beside the selection of the area, the case-study also requires
the definition of proper (policy) scenarios on which model simu-
lations can be ran. Due to the relevant expected implications on
land use, here we implement the recent reforms of the European
Common Agricultural Policy (CAP) and, in particular, the decou-
pling of support.12 Agricultural policies of most OECD countries
underwent major regime changes over the last decade, with a sub-
stantial migration from market intervention and support coupled to
on historical entitlements; the 2003 Fischler Reform is somehow
exemplary of this general propensity in re-designing agricultural
policies (Baffes and de Gorter, 2005; Antón and Sckokai, 2006).

12 Most policies can be implemented in RegMAS just operating on the input files;
nonetheless, the open-source nature of RegMAS allows the user an easy implemen-
tation also of policies that require a code revision.
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Table 1
Modulation levels (in %) (Health Check scenario).

Total farm payment (euros) 2008 2009 2010 2011 2012–2015

0–250 a 0 100 100 100 100
250–5000 0 0 0 0 0
5000–100,000 5 7 9 11 13
100,000–200,000 5 10 12 14 16
200,000–300,000 5 13 15 17 19
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On the one hand, the number of farms seems only marginally
influenced passing from dec to hc, as the drop in the 2008–2015
period is similar in the two cases (20.9% and 21.2%, respectively).16

Farm number decline is one of the expected outcome of decou-
>300,000 5 16

a Payments over 250 euros are not affected by this modulation threshold.

Essentially, the Fischler 2003 CAP Reform (whose implemen-
ation started in 2005), assigns EU farmers a direct support (the
ingle Farm Payment, SFP) exclusively linked to historical pay-
ents (the 2001–2003 “reference period”) and no longer associated
ith actual productions.13 This reform has been further extended
ith the so-called Health Check of the CAP in 2008 (EUCOM, 2008).
e thus run simulations starting from 2001, in order to include the

eference period. Over 2001–2003 years, the model “collects” the
oupled subsidies received by each farm, then automatically cal-
ulates the Single Farm Payment (SFP) due to any different farmer
nd finally assigns the SFP to farmers.

Therefore, for each farmer the model keeps track of three vec-
ors: dRights, dYears and dHa. dRights are the average (over the
eference period) entitlements that a farmer “owns” for the decou-
led payment, differentiated by specific production activity. dHa
re the average hectares that have generated the entitlements for
he specific activity. Finally, dYears are the years for which these
verages have been calculated. Using an “activity-specific flag” to
ndicate the reference period, every year the model updates the
ntitlements for each agent and each activity:

dRightst = dRightt−1 ∗ dYearst−1 + newRightt

dYearst−1 + 1

dHat = dHat−1 ∗ dYearst−1 + newHat

dYearst−1 + 1
dYearst = dYearst−1 + 1

(7)

here (newRight) is the coupled premium obtained for that year by
he farmer on the specific activity but only if the “activity flag” is
n “registration” mode. Consequently, different products may have
ifferent reference periods, even not continuous.

In assigning the entitlements to each farmer in terms of SFP,
egMAS can actually distinguish between historical SFP (Eq. (8))
nd area-based SFP (Eq. (9)):

Payment =
N+S∑
i=1

dRightsi ∗ dRateCoefi (8)

Payment =

⎛
⎜⎜⎜⎜⎜⎝

N+S∑
i=1

A∑
y=1

dRightsi,y ∗ dRateCoefi

N+S∑
i=1

A∑
y=1

dHai,y

⎞
⎟⎟⎟⎟⎟⎠

∗
N+S∑
i=1

dHai (9)

here N + S are all the activities; (dRateCoefi) counts for eventual
artial decoupling and A is the number of agents in the model.

ote that in both historical and area-based payments, for a given
ear/activity, the farmer can still benefit from a mix of coupled and
ecoupled premiums. This farm-based modelling approach also
llows for a detailed implementation of the further policy instru-

13 This is, in fact, the implementation of the 2003 Reform in Italy, as other countries
ctually opted for a regionalised flat payment.
18 20 22

ments introduced with the 2003 CAP reform and, in particular, of
modulation.

On this basis, two policy scenarios have been defined:

3.2. Decoupling scenario (dec)

Historical SFP starts in 2005 (as this is the case in Italy, in fact)
and the modulation on payments over 5000 euros rises from 3% in
2005 to 5% in 2007. Most payments are fully decoupled but some
coupled (“quality”) premiums remain (for durum wheat and ex art.
69 of the reform). This scenario approximates the actual imple-
mentation of the 2003 Fischler CAP Reform in Italy, including the
national decisions in terms of decoupling options and art. 69.

3.3. Health Check scenario (hc)

The hc scenario corresponds to the dec scenario till 2008, but
from 2009 onward it includes the decisions taken under the Health
Check of the CAP agreed in November 2008 (EUCOM, 2008):

• Modulation– payments deductions become stronger starting
from 2009 and following the path reported in Table 1, while
a minimum payment limit is introduced (payments below 250
euros are totally dropped).

• Set aside– the mandatory minimum share (10%) is abolished from
2009.

• Regionalisation– from 2010 the SFP calculation follows the area-
based implementation (also known as “regionalisation”) as in Eq.
(9). The redistribution of the subsidies, however, excludes farm-
ers without entitlements.14

• Full decoupling– since Italy has already opted for full decoupling
in 2003, the novelty only concerns the decoupling of the spe-
cific durum wheat payment (40 euros per ha) starting from 2010,
on the base of the 2005-2008 reference period. The other “qual-
ity” coupled payments ex art. 69 (now, ex art. 68), however, are
maintained.

4. Model verification: scenarios’ results

Table 2 presents the model simulation results obtained running
the dec and hc scenarios on the selected region from 2001 to 2015.15
pling and the slightly larger decline observed under the hc scenario

14 Though voluntary according to the Health Check final decisions, we assume that
Italy opt for regionalisation starting from 2010.

15 Simulations have been conducted with Version 1.3 of RegMAS software. Readers
can replicate them downloading RegMAS at http://www.regmas.org.

16 Projections are presented starting from 2008 which it is the last year in which
the two scenarios are equal.

http://www.regmas.org
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Table 2
Main simulation results: comparison of the two scenarios in 2015.

dec 2015 hc 2015 % var dec 2008–2015 % var hc 2008–2015 % var 2015 hc–dec

Number of farms (n) 4304 4288 −20.9 −21.2 −0.4
Small farms: 0–3 ha 405 355 −73.9 −77.2 −12.4
Middle size farms: 4–15 ha 3004 3092 −2.4 0.4 2.9
Large farms: >16 ha 895 824 10.4 1.6 −7.9

Avg. size (UAA ha/farm) 10.97 11.01 23.5 24.0 0.3
Exiting farms (n) 1420 1436 1.1
Abandoned land (%) 3.25 3.27 0.5

Farm profit (euros/farm) 10,981 11,386 12.1 16.2 3.7
Including CAP aids 16,068 16,202 15.7 16.6 0.8
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4.2. Model validation: comparison with a “spaceless” RegMAS

Model simulations over the two scenarios show that, also con-
sidering the specific features of the area under study, the internal

Table 3
Abandoned land by altitude (2015).

Altitude dec hc hc-dec
Income (euros/farm) 20,942 20,982
Off-farm labour (h/farm) 975 956

Total agr. labour (AWU) 2884 2928

an be thus attributed to the slight further decoupling implied by
he Health Check. On the other hand, the difference between the
wo scenarios becomes more evident focusing on farm size. Smaller
arms seem more negatively influenced by the hc scenario and this
s the expected outcome of the introduction of a minimum pay-

ent limit, i.e., of the suppression of small payments (< 250 euros).
s a matter of fact, these small payments represent only 0.68%
f the total support (in 2008). However on small farms (< 3 ha)
hese small payments actually represent a much larger proportion
f total CAP support (22.36%). The impact on local agriculture of
his threshold, therefore, is neither trivial nor negligible.

Due to the larger modulation the number of larger farms
ncreases much less in the hc case thus re-equilibrating the impact
etween medium and large size classes. At the same time, the
et farm profit, i.e. not computing the CAP support, significantly

mproves under the hc scenario evidently due to the larger “free-
om to farm” resulting from the abolition of the mandatory set
side and from full decoupling of durum wheat support (Antón and
ckokai, 2006).

The Health Check is often associated to even more intensive
arming than dec scenario due to the possibility of cropping the for-

er set aside land and to a stronger market orientation induced by
urther decoupling. Thus, this scenario also demands more labour
o be subtracted from off-farm activities. This explains why, even-
ually, the impact of hc on household income, this being the sum of
arm profit and income from off-farm activities, is almost negligible
ompared to the dec scenario.

Some of these effects of hc compared to the 2003 CAP Reform
an be also attributed to the presumably more drastic novelty
f the Health Check, that is, regionalisation of the SFP which is
xpected to generate a significant redistributional effect among
armers. Comparing the two scenarios on 2015 and considering the
hole amount of subsidies (remaining production coupled pay-
ents plus SFP), we observe less farms that “loose” than farms that

win” money is smaller (46.43% vs. 51.31%). This explains why the
verage per year loss (1146.18 euros) is higher than the average
ain (647.35 euros). Nonetheless, due to the small average size of
arms, only some exceptional cases loose or gain more than 5000
uros, while the large majority (92.4%) remains within the ± 2000
uros range and 47.24% within the 500 euros range. Therefore, as
xpected, the model confirms that regionalisation does imply real-
ocation of support across farms but also that such effect is limited
ue the quite homogeneous and small size of farms themselves.

Though, as mentioned, it is not possible to validate the model on

eal-historical data, it is still interesting to assess model consistency
y comparing its aggregate (macro)-results with macro-historical
rends. In particular, if we consider the whole simulation period
2001–2015), RegMAS results indicate, on the selected area, a yearly
.78% decline of the number of farms and a 0.20% decline of the UAA.
7.6 7.8 0.2
2.6 −14.3 −1.9

2.5 −11.2 1.5

This abandonment rate is fully comparable with what observed in
Italy over the period 1990–2003 (2.32%). Looking at a more dis-
aggregated territorial level, statistical data for the Marche region
indicates a yearly decline of 2.67% in the number of farms and 0.26%
in the UAA over the period 2000–2007. This limited difference can
be ascribed to the fact that our study-area actually represents a
“strong” agricultural territory compared to the average character-
istics of the whole Marche Region.

4.1. Spatial effects

Table 3 summarises land use within the region in 2015 under
the two scenarios. We use a conservative coefficient to establish
altitude influence on the gross margin (2% loss each 100 m); never-
theless, we observe that most abandoned plots, that is either vacant
or uncultivated plots, concentrate in the hilly and mountainous
part of the region (see also Fig. 6). An important role in favour-
ing abandonment in this part of the region is played by its higher
fragmentation due also to the larger presence of non-agricultural
areas (forests, non-maintained grassy areas, etc.). Fragmentation
increases the average distance among cultivated plots and, hence,
transport costs are higher compared to the homogeneous agricul-
tural area in the Eastern part of the region. In the South-Western
part, land freed the by small farms that exit the agricultural activ-
ity may be too far to be economically advantageous for remaining
farms, thus leading to land abandonment.

The comparison between the two scenarios, however, does not
show any remarkable impact in this respect. Abandonment rate is
almost the same in the two cases, though it slightly increases under
the h c in the mountainous areas. After all, further decoupling and
the introduction of a minimum payment limit may induce more
very small farms to exit the activity, thus releasing more land that
remains unrented. This effect, however, is compensated and almost
entirely offset by the slight increase of support in less productive
area due to regionalisation.
ha % ab. rate ha % ab. rate % diff

0–200 m 769 2.31 774 2.33 0.65
200–400 m 679 5.00 678 4.99 −0.15
400–900 m 135 7.51 139 7.73 2.96
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Table 4
Sensitivity analysis on transport costs and gross margin reduction with altitude (%
difference with respect to the hc scenario in 2015).

noTC 2× TC 10× TC noAltC 2× AltC 10× AltC

N farms −6.3 + 1.9 −6.9 + 2.7 −1.5 −16.2
Total income + 0.7 −2.3 −34.7 + 2.1 −1.0 −21.0

Rental prices
Arable dry + 22.7 −20.1 −90.5 + 4.6 −7.0 −47.9
Arable irrigable + 7.9 −1.2 −25.6 + 18.9 −11.2 −82.9
Wine + 3.2 −3.4 −19.4 + 11.1 −13.2 −71.1
Fruit −1.1 −7.7 −17.9 + 9.0 −11.6 −65.0
Olive + 5.6 + 6.1 −10.9 + 6.3 −7.3 −66.5
Pasture + 110.6 −49.7 −98.8 + 16.5 + 1.3 −76.2

Abandoned land + 15.3 + 1.4 + 892.4 −8.3 + 3.2 + 134.7

noTC, 2× TC, 10× TC indicate no transport costs, double and 10 times transport costs
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Table 5
The impact of AltC on abandonment rate in 2015 (%).

Altitude Land abandonment rate

hc scenario noAltC 2× AltC 10× AltC

spatial features are actually attributed to plots on a random basis
rather than on the basis of the real land use coverage. Nonetheless,
this latter solution would not be able to associate to this macro-
evidence the correct impact on land use (the micro-level). To show
this specific feature of RegMAS, a second sensitivity analysis con-
ith respect to the hc scenario, respectively.
oAltC, 2× AltC, 3× AltC indicate no variation, double and 10 times variation of
ross margin with altitude compared to the original scenario (2% loss any 100 m),
espectively.

tructure of RegMAS seems consistent with the real world as it gen-
rates those effects that are generally expected, in direction and
agnitude, from the introduction of the hc measures. Nonetheless,

hese aggregate results could be obtained by a properly defined
onventional ABM, as well. To validate the original features of the
odel, that is, in particular, to demonstrate the advantages of spa-

ial explicit modelling, we need to assess which kind of additional
nformation such features (i.e., spatial explicitness) can provide
ompared to conventional ABMs. To pursue this kind of valida-
ion we carry out sensitivity analysis by comparing RegMAS results
ith those obtained by a RegMAS model where spatial features are
ropped.

Firstly, we run the model without spatial influence on costs and
and renting, that is, no transport Costs (TC) and, at the opposite,

ith TC augmented two and ten times, respectively. Moreover,
pace influences performance and renting behaviour also in terms
f altitude. As mentioned, in RegMAS a simple coefficient simulates
he reduction of gross margin due to altitude (the altitudinal coef-
cient, AltC). Therefore, we also perform model simulations under
lternative values of the gross margin reduction coefficient: the
ross margin declines with the altitude at 0%, 4% (double than stan-
ard 2%) and 20% (ten times), respectively. Results of this sensitivity
nalysis are reported in Table 4.17 When the spatial dimension (that
s, distance and TC) is skipped, farms loose their advantage on close
lots and enter a greater competition for land renting. Such more
ompetitive environment leads to a reduction of the number of
ctive farms. The opposite happens when transport costs increase
nd, thus, space acts as a non-competitive factor: the number of
arms increases. This latter effect disappears, however, when TC
ecome too high: they negatively affect farmer profit in such a way
hat a larger land abandonment occurs. Therefore, TC have a direct
egative influence on farm profit and income but, at the same time,
his effect may be counterbalanced by the impact on land mar-
et. With lower TC farms save costs but have to face the higher
ompetition for land, resulting in higher rental prices, especially
or activities with lower gross margin and on which, evidently, TC
ariations have a larger impact in terms of economic convenience
o continue production (i.e., pasture land).

RegMAS thus seems fully capable of representing this not trivial

ffect of space (through TC) on farm performance and behaviour.
his capability is also confirmed by results obtained under alterna-
ive responses of gross margin to altitude. As the AltC coefficient is
xpressed as a proportion of gross margin, productions with higher

17 Analogous results can be obtained under scenario dec; results are available on
equest.
0–200 m 2.33 2.18 2.43 3.33
200–400 m 4.99 4.38 5.06 15.19
400–900 m 7.73 7.17 7.78 30.31

gross margins (e.g., wine and fruits & vegetable) are expected to be,
in absolute terms, more sensitive to AltC while for TC the opposite
holds true. This expectation is confirmed by results if we compare
the impact of AltC variation on arable crops cultivated on dry land
and on irrigable land (where gross margin is expected to be higher).

Another difference with TC is that AltC affects farm perfor-
mance in a univocal way: if AltC decreases, performance improves
in hilly and mountainous farming; the opposite occurs when AltC
increases. This affects the number of active farms and, as a con-
sequence, land abandonment. Table 5 reports the abandonment
rates under the alternative AltC values compared to the baseline
hc scenario. Results show that the response of abandonment to
AltC variations is relatively inelastic. While abandonment remains
almost unaffected in plain areas regardless AltC, as obvious, a large
impact in hilly and mountainous areas can be observed only when
the reduction of gross margin with altitude becomes very intense
(20% loss any 100 meters).

It may be argued that the capacity of RegMAS to take into
account space (as distance/TC and altitude) in generating aggregate
(macro)-results can be also obtained in conventional ABMs where
Fig. 5. Land use classes and DTM in the real RegMAS simulation area (a) and in the
randomly shuffled case (b). Map colours refer to the standard Corine Land Cover
legend, downloadable from http://dataservice.eea.europa.eu. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of the article.)

http://dataservice.eea.europa.eu
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Table 6
Results robustness: results of five simulation repetitions with different random number seed, hc scenario in 2015).

Full region (48,679 ha UAA) Sub-region (931 ha UAA)

avg. st. err. cv avg. st. err. cv

Number of farms (n) 4294 11.9 0.0028 87 2.8 0.0320
Avg. size (UAA ha/farm) 10.98 0.0 0.0027 10.7 0.4 0.0410
Exiting farms (n) 1430 11.9 0.0083 23 2.8 0.1196
Abandoned land (%) 3.31 0.0 0.0139 0.8 0.2 0.2187
Farm profit (euros/farm) 11,340 55.3 0.0049 12,834 353.1 0.0275

Including CAP aids (euros/farm) 16,148 53.5 0.0033 17,394 274.7 0.0158
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Income (euros/farm) 20,929 48.3
Off-farm labour (h/farm) 956 9.4

Total agr. labour (AWU) 2928 26.4

ists in running the model on the same region but with all spatial
nformation (land coverage and DTM, Digital Terrain Model, for alti-
ude) randomly shuffled (rand space). Fig. 5 graphically compares
he two cases: Fig. 5(a) shows land coverage and altimetric infor-

ation as they enter RegMAS simulations with plots associated to
he real land use; Fig. 5(b) shows how the area looks like when plots
re assigned randomly. As evident, when the “real” spatial informa-
ion is dropped, we miss the link between real local conditions and
gents’ behaviours. In particular, randomizing the space, we are
nable to take into account those special and somehow extreme
onditions of marginality that may induce farms to exit the activity
nd, therefore, to release or abandon land. Consequently, it should
ot surprise that the rand space case also reports different aggre-
ate (macro)-results: a higher number of active farming at the end
f the simulation (+3.73% in 2015) and a lower land abandonment
ate (−12.4%).

Moreover, while in RegMAS results indicate a strong difference
n land abandonment rate between plain and mountainous areas,

n the rand space case land abandonment remains homogeneously
egardless altitude: in the 400–900 m altitude level the abandon-
ent rate (2.97%) is only marginally greater than in the 200–400 m

2.85%) and 0–200 m (2.74%) levels. Fig. 6 graphically displays agri-

ig. 6. Agricultural land use (in green) vs. land abandonment (in red) in the RegMAS
imulation area (a) and in the randomly shuffled case (b) (hc scenario, 2015). (For
nterpretation of the references to colour in this figure legend, the reader is referred
o the web version of the article.)
0.0023 20,762 63.9 0.0031
0.0098 392 59.0 0.1505

0.0090 87 4.0 0.0465

cultural land use (green) and land abandonment (red) in the area
under the two cases: in RegMAS abandonment is associated to
a condition of spatial marginality (Fig. 6(a)) while this aspect is
completely lacking when we miss spatial explicitness and assign
plots on a random basis (Fig. 6(b)). This further sensitivity analysis
illustrates the major feature of RegMAS compared to conventional
ABMs. It is able to generate macro-evidence, as well, but starting
from the real micro-evidence, that is, the real use of land. As a con-
sequence, the spatial features of the model do not only provide
simulations of “real” land use change (with all environmental con-
sequences) but also show how this change affects macro-results
themselves.

A final sensitivity analysis can be carried out on RegMAS look-
ing for simulation robustness given its stochastic components. The
stochastic nature of RegMAS derives from the following operations
performed during model initialisation and simulation:

• alignment of Corine Land Cover dataset with Census datasets
(reclassification)18;

• initial farmer spatial allocation and land allocation (as described
in Section 2.3.2);

• random object’s vintage at the beginning of simulation;
• random rental contracts’ duration;
• sequence of free plots’ entrance in the bidding process.

RegMAS takes advantage of modern programming languages
allowing the random number generator “seed” to be either re-
initialised at each run or kept fixed. If the seed remains fixed,
simulations reproduce exactly the same output given the same
input and, consequently, differences across scenarios’ simulations
can be only attributed to the different inputs (i.e., policy measures).
Still, results depend on a particular, though fixed between scenar-
ios, random extraction.

Therefore, we repeat simulations 5 times, any time changing
the random seed in order to assess the robustness of results or,
in other words, to assess to what extent the stochastic compo-
nents of the model affect simulation results. Table 6 reports average
(avg.), standard error (st. err.) and coefficient of variation (cv)
for the main model aggregate results over the five repetitions.

Results are evidently very stable across repetitions but, though
very low, the coefficient of variation strongly depends on the size
of the experiment, that is, of the area under study. In particular,
Table 6 indicates that in smaller regions both border effects and
the smaller set of agents (farmers) lead to a higher variability over

18 Corine Land Cover map includes some mixed classes whose plots are randomly
reallocated to specific categories obtaining aggregated values that are consistent
with census statistics.
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he stochastic components.19 This evidence represents an argu-
ent in favour of applying RegMAS to larger regions as this implies
ore robust results in simulation analysis. Larger regions, however,

lso brings about a higher computational burden. This trade-off
etween robustness and computational costs is actually minimised

n RegMAS compared to other simulation toolkits. Castella et al.
2005), for instance, use the Cormas Toolkit (Bousquet et al., 1998)
o perform simulations on a relatively small (50 × 50) grid,20 thus
mplying much lower computational burden but lower robustness,
s well. Nonetheless, even in RegMAS the optimal compromise
etween these two aspects, and, therefore, the optimal regional size
or application, is still to be found and deserves further attention in
uture research.

. Concluding remarks

This paper presents and tests RegMAS, an open-source, spa-
ially explicit agent based modelling framework (and software),
esigned to assess the possible impact of alternative scenarios
mainly changes in policy regime) on heterogeneous farm struc-
ures, income and land use. The main original feature of RegMAS
ests on the fact that it allows agents (farmers) to take into account
patially explicit information in formulating their behaviours and,
hus, it allows assessing the consequent economic (as well as envi-
onmental) outcome at both the micro (plot-by-plot)- and the
acro (aggregate)-levels.
By assessing its functioning on a portion of a central Italian

egion (Marche) and under two alternative CAP scenarios (the 2003
eform and the Health Check), our simulation demonstrates the
dvantages of such spatial explicitness. Results suggest that the
odel behaves as expected in all major aspects and, thus, it can

e used to derive the aggregate response of a complex and het-
rogeneous system whenever the external environment (and, in
articular, the policy regime) is exogenously modified. Further-
ore, by making the spatial dimension explicit, RegMAS seems
ore able, compared to conventional ABMs, to associate these
acro-results to the underlying micro (land use)-behaviours such

s lent renting, land abandonment, and exiting the business.
As the major purpose of the paper is to provide an origi-

al contribution on explicit spatial modelling within conventional
spaceless) ABMs, simulation results specifically emphasize the
nteresting insights concerning the often disregarded effects of
ransport costs and loss of margins due to altitude which allow such
ind of models to generate more plausible results on how exter-
al changes (policy reform, in the present case) impact agricultural
ctivity.

Though here applied to specific policy measures, RegMAS is
exible enough to allow adaptation over a large set of different
cenarios (change in agricultural prices, introduction of environ-
ental regulations, introduction of new technologies, etc.). This
ore extensive application can be one possible direction of fur-

her research on this modelling tool. Further effort is also needed
o assess the optimal geographical size of model application and

n improving its original features especially concerning how space
ffects land market, transport costs, performance and agents’ inter-
ction. Eventually, as on open-source software, RegMAS can be
urther developed in these or other directions by user themselves.

19 Here “border effects” indicate the effects on agent’s behaviour of being close to
he borders of the simulation area. Spatial simulations can avoid border effects using
eriodic boundary conditions (e.g. running the simulation on a toroidal surface) or
an reduce them using a larger region.
20 In comparison, the present simulations are ran on a 396 × 301 grid, with 69,143
on-zero cells.
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